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FOREWORD

Batteries serve as the chemical source of electrical energy. The
voltage of a battery cell is determined by the thermodynamic conditions
within the cell. Thermodynamics can be used as an aid in distinguishing
between electrochemical reactions proposed for the reaction which sets the
voltage of the cell. In this report thermodynamic data are used to select
the electrochemical reaction in each of eight systems.
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initial support in gathering the data, Donald L. Warburton for information
supplied on most of the systems presented here, and Benjamin F. Larrick for
many discussions on thermodynamics and battery reactions.
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INTRODUCTION

For some batteries there has been little controversy concerning the
actual electrochemical reactions. For others there is still much debate
about what reactions produce the currents and give the observed potentials.
One needs to know what these reactions are if the capabilities of the
batteries are to be determined from a theoretical standpoint. Once the
theoretical capabilities are known a comparison with the actual performances
can be made.

Various measurements made on the anode, cathode, and complete cell can
be used to determine the electrochemical reaction actually taking place in a
battery. Among these are the constancy and changes in voltage during

discharge, the determination of the products formed, the variation of
voltage with changes in the electrolyte's composition, and the consumption
or production of water during discharge. However, both the open circuit
voltage (OCV) and closed circuit voltage are determined by the thermodynamic
conditions in the battery's cells. The most useful method for determining
the correct electrochemical reaction is to calculate the OCV from
thermodynamic data and compare it with the measured OCV.

Three requirements for having the calculated OCV (Vc) agree with the
measured OCV (Vm) for a cell are: (1) equilibria exist in the system,
(2) the chemical composition for the Vm is known, and (3) the standard Gibbs
energies of formation and activities are known with sufficient accuracy for
the Vc. When these requirements are met, the Vc for the correct
electrochemical reaction will agree to within millivolts of the Vmn
confirming that the reaction is correct.

THE THERMODYNAMIC DATA

A number of typical batteries and one experimental cell are
considered. The data are for 298K except where indicated. Table I lists
the standard Gibbs energies of formation, AfG'. Table 2 lists the
electrolyte compositions of battery cells for the Vm's where the electrolyte
enters into the electrochemical reaction. Table 3 lists the activities used
in calculating the Vc's. The standard Gibbs energy of reaction is ArG*,
and E* is the corresponding voltage. The Gibbs energy for the reaction
under cell conditions is ArG.

pWV
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BATTERY REACTIONS WITHOUT CONTROVERSY

Some of the systems for which there is presently no controversy

concerning the electrochemical reactions include both primary and secondary

systems, molten salt, aqueous, and solid electrolyte systems. For the

C12-Li molten salt system the reaction is (1) with the Vc equal to the Vn

2Li(L) + Cl2(g) * 2LiCl(Z) (1)

ArGo = -685.44 kJ Vc = 3.612V

E0 = 3.552V Vm = 3.612V

at 773K.15 The anode is a Li-B alloy, and the electrolyte is a molten

LiCl-KCI eutectic. For the secondary PbO 2-Pb system with a sulfuric acid
electrolyte, (2), the Vc and Vm agree to within 0.1%. The values given with

Pb(cr) + PbO 2 (cr) + 2H2 SO4 (ai) - 2PbSO4 (cr) + 2H20(t) (2)

ArG* = -394.148 kJ Vc = 2.123V

SE 0 = 2.042V Vm = 2.125V (16)

(2) are for a 37.4% electrolyte. Since the electrolyte enters into the
reaction, the voltage changes with its composition. For a 33.8% electrolyte

the Vc is 2.093V and the Vm is 2.095V1 6 again agreeing to within 0.1%.
The agreement between the Vc and Vm for the solid electrolyte system of
Pb1 2 -Li,

17 (3), is within 0.5%. For the system Ag2 0-Pb with an

2Li(cr) + Pb12 (cr) - 2LiI(cr) + Pb(cr) (3)

ArG0 = -366.94 kJ Vc = 1.901V

E0 = 1.901V Vm = 1.892V

alkaline electrolyte, (4), there is exact agreement between the Vc and Vm.

Pb(cr) + Ag 20(cr) P PbO(cr) + 2Ag(cr) (4)

ArG ° = -176.69 kJ Vc = 0.916V

E0 = 0.916V Vm = 0.916V*

*Unpublished data, Chreitzberg, A. M.
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BATTERY REACTIONS WITH CONTROVERSY

In all zinc anode batteries with an alkaline electrolyte the
possibility exists that Zn(OH) 2, rather than ZnO, is the anodic discharge
product. The available thermodynamic data for determining ArG° for the
dehydration of Zn(OH) 2 to ZnO as a function of temperature

1 ,2 ,1 8

indicate that Zn(OH)2 is not stable above 287K. For the HgO-Zn system
with the alkaline electrolyte saturated with respect to ZnO and HgO, (5),

Zn(cr) + HgO(cr) - ZnO(cr) + Hg(Z) (5)

ArG0 = -259.761 kJ Vc = 1.346V

E° = 1.346V Vm = 1.346V

the Vc equals the Vm. Taking the anodic discharge product as Zn(OH) 2 ,
(6), the Vc is too low.

Zn(cr) + H2 0(4) + HgO(cr) - Zn(OH) 2 (cr) + Hg(9) (6)

ArG0 = -259.402 kJ Vc = 1.328V

go = 1.344V Vm = 1.346V

Although Zn(OH) 2 is unstable at ambient conditions, it is slow to
dehydrate. Experiments indicate that alkaline systems saturated with

Zn(OH)2 give a Zn(OH) 2 voltage initially
19 ,20 and those saturated with

ZnO give a ZnO voltage. 19 Using a hydrogen electrode with Zn, ZnO, the Vc
(for ZnO, -0.4207V) agrees with the Vm to within 0.2% (-0.4197V) in a
0.1212m Ba(OH)2 electrolyte; and with Zn, Zn(OH)2 in a 0.2262m Ba(OH)2
electrolyte the Vc (for Zn(OH)2 , -0.4185V) and Vm (-0.4136V) agree to
within 1.2%.19 Using the HgO-Zn system with a Im NaOH electrolyte
saturated with Zn(OH) 2, the Vc (for Zn(OH) 2, 1.3435V) and the Vm
(1.3434V) agree to within 0.01%.20 For (6) the Vm was for a 40% KOH
solution saturated with respect to ZnO. The activity for H20 in the
saturated, concentrated KOH is less than 1/3 that for the saturated lm NaOH
system; and the Vc for (6) (Zn(OH)2 , 1.328V) will not be the same as the
Vc for Im NaOH (Zn(OH)2, 1.3438V). Since many of the alkaline zinc
batteries are saturated with ZnO and since it is stable with respect to
hydration at ambient conditions, ZnO is the expected discharge product of Zn
anodes.

Two reactions, (7) and (8), occur in the AgO-Zn system with an alkaline

Zn(cr) + 2AgO(cr) ZnO(cr) + Ag20(cr) (7)

ArG ° = -357.72 kJ Vc = 1.854V

Eo = 1.854V Vm = 1.856V 2 1

3
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Zn(cr) + Ag 2O(cr) - ZnO(cr) + 2Ag(cr) (8)

ArG ° = -307.1 kJ Vc = 1.591V

E ° = 1.591V Vm = 1.602V
2 1

electrolyte saturated with respect to ZnO and silver ions. The Vc and Vm

for reaction (7) agree to within 0.1%. A closed circuit voltage plateau for
(7) does not exist too long before (8) starts occurring probably because AgO

becomes coated with Ag2 0.
2 2 Reaction (8) is not controversial, but the

Vc is lower than the Vm. Cells starting with AgO were partially discharged

to give Ag20 for which the Vm is given for (8). 
1 It is tempting to say

that a pure reaction (8) was not occurring resulting in a Vm higher than the

Vc by 0.7%.

One of the oldest commercial batteries, the Leclanche battery, is the

one for which the most controversy exists about the actual electrochemical

reaction. A large number of electrochemical reactions have been proposed

for the MnO 2-Zn system with an NH4 CI-ZnCI 2 electrolyte. The initial

conditions prior to discharge are the conditions which can be used to

calculate the OCV. After discharge has progressed, the composition of the

system is often not known for an OCV measured by interrupting the discharge;

and a Vc corresponding to the Vm cannot be given.

A two, rather than a one, electron reduction of MnO2 occurs for the

initial electrolyte conditions that exist in most commercial cells.
Reaction (9) is one of those that can be written for a two electron

Zn(cr) + MnO 2 (cr) + 4H+(ao) - Zn2 +(ao) + 2H20(t) + Mn2 +(ao) (9)

ArG ° = -384.278 kJ Vc = 1.603V

E0 = 1.991V Vm = 1.598V

reduction of MnO 2 . The agreement between the Vc and Vm is 0.3%. Where

various reactions occurring in a system are interrelated through equilibria,

reactions giving the same calculated voltage can be written. Equilibria

exist in the system so that reactions (10) and (11) can be used to generate

1120(t) - H+(ao) + OH-(ao) (10)

ArGo = 79.885 kJ

NH4OH(ao) - NH4+(ao) + OH-(ao) (11)

ArG ° = 27.096 kJ

.4
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data for (12) by which NH 4OH is produced. The Vc's for (12) and (9) should

Zn(cr) + MnO 2(cr) + 2H20(L) + 4NH4+(ao)

- Zn2 +(ao) + Mn 2+(ao) + 4NH4OH(ao) (12)

ArGO = -173.122 kJ Vc = 1.604V

E = = 0.897V Vm = 1.598V

be identical and are within I mV.

Additional information supports a two electron reduction of MnO2.
Under acid conditions (pH <5) only Mn 2 + ions are formed during
discharge.2 3 Under the initial electrolyte conditions the slope of the
potential versus pH curve indicates a two electron reduction. If the
initial electrolyte conditions (thermodynamic conditions) are maintained,
the capacity of an MnO 2 cathode approaches that of a two electron
reduction on discharge. The initial thermodynamic conditions can be

maintained by using a flowing electrolyte 2 5 or a large volume of
electrolyte.26

An alternate source of Mn2 + ions could be (13) implying a one electron

2MnOOH(cr) + 2H+(ao) - MnO2 (cr) + Mn
2 +(ao) + 2H20(0) (13)

ArG0  -45.5 kJ ArG = -21.8 kJ

reduction of Mn02 by (14). The Vc is too low for (14) to be the initial

Zn(cr) + 2MnO2(cr) + 2H+(ao) - 2MnOOH(cr) + Zn 2+(ao) (14)

ArG0 = -338.8 ki Vc = 1.491V

EO = 1.756V Ym = 1.598V

* electrochemical reaction. The Gibbs energy for (13) (-21.8 kJ) at a plh of
4.65 indicates that the electrolyte would not be saturated with MnOOH. When

, N the pH becomes higher (>7) as the cell is discharged, the slope of the
potential versus pH curve approaches that for a one electron reduction of

i % + M n O2 2 4 , 2 7

Three other reactions (15), (16), (17) involving a one electron
reduction of MnO 2 are given to show what their calculated voltages are

* under the initial cell conditions. Reactions (15) and (16) are written with

Mn 20 3 , rather

4Zn(cr) + 8MnO cr) + Zn 2 +(ao) + 2Cl-(ao) + 4H2 0(W)

- ZnCl 2-4Zn(OH) 2(cr) + 4Mn 20 3 (cr) (15)

ArG ° = -1098.2 kJ Vc = 1.453V

E° = 1.423V Vm = 1.596V

5
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Zn(cr) + 2MnO 2 (cr) + 2NH 4 +(ao) + 2Cl-(ao)

- ZnCl 2o2NH 3 (cr) + Mn 20 3 (cr) + H2 0(L) (16)

ArG ° = -270.073 kJ Vc = 1.480V

.E = 1.400V Vm = 1.598V

than MnOOH - the "hydrated" form. The Vc for MnOOH would generally be about

O.019V higher. For (17) the Vc is higher than for any other one electron

Zn(cr) + 2MnO 2 (cr) + ZnO9Mn20 3 (cr) (17)

ArGo = -295.72 kJ Vc = 1.532V

E0 = 1.532V Vm = 1.598V

reduction of Mn0 2 , but the Vc is still 4.3% lower than the Vm. For all of
the one electron reductions of MnO2 , (14) - (17), the facts are the same.
Under the initial electrolyte conditions a one electron reduction of MnO2

can not be taking place because the Vc is too low, the slope of the potential

versus the pH curve is wrong, and the electrolyte is unsaturated. The

thermod namic data indicate that all of the Mn products would react to

form Mn ions, MnO2 , and H2 0. Not until a pH > 7 would any of them

become stable.

A one electron reduction of MnO2 occurs initially for the alkaline

electrolyte MnO2 -Zn system. This is expected since even for the Leclanche

battery a one electron reduction occurs when the pH > 7. In addition, the

Vc is too low compared with the Vm for reaction (18), the two electron

Zn(cr) + MnO 2 (cr) + H120(R)-- ZnO(cr) + Mn(OH)2 (am) (18)

ArG ° = -231.03 kJ Vc = 1.189V

E* = 1.197V Vm = 1.54 (29)

reduction, to be the initial electrochemical reaction. In commercial cells

the alkaline electrolytes are usually saturated with ZnO, but they would not

become saturated with complexed Mn 3+ ions until after discharge has

occurred for a while. Before saturation, reaction (19) would be expected.

Zn(cr) + 2Mn0 2 (cr) + 3H20(t) + 20H-(ao) P ZnO(cr) + 2Mn(OH)4-(ao) (19)

ArG0 = -228.145 kJ Vc = 1.534V

E0 = 1.182V Vm = 1.54V*

*Warburton, D. L., personal communication.

6
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The Vc is based on 1% of saturation with complexed Mn 3+ ions in a 30% KOH
solution saturated with ZnO. The Vm is for a commercial cell with that
electrolyte.

After saturation with respect to complexed Mn3+ ions, a reaction such
as (20) or (21) probably occurs. The MnO2 discharge product for (22)

Zn(cr) + 2MnO 2(cr) + H20(1) - ZnO(cr) + 2MnOOH(cr) (20)

ArG ° = -272.9 kJ Vc = 1.406V

E ° = 1.414V Vm = 1.54V*

Zn(cr) + 2MnO 2(cr) - ZnO(cr) + Mn203(cr) (21)

ArG ° = -269.12 kJ Vc = 1.395V

E° = 1.395V Vm = 1.54V

2Zn(cr) + 3MnO2 " Mn304 (cr) + 2ZnO(cr) (22)

ArG ° = -524.38 kJ Vc = 1.359V

lE 1.359V Vm = 1.54V*

contains both Mn2 + and Mn3+, and reaction (22) has the lowest Vc. Of
course (20) - (22) all have much lower Vc's than the initial Vm. This is to
be expected. The electrolyte is not initially saturated so no solid product
containing Mn3 + can form. Even if a solid solution of MnOOH and MnO2 is
formed,2 8 it will not be formed initially. As indicated earlier if the
exact cell conditions in a partially discharged cell are not known when
OCV's are measured by interrupting the discharge no exact comparison can be
made between the Vm and a Vc.

SUMMARY

The data given here conclusively demonstrate that the Vc for the
correct electrochemical reaction will agree to within millivolts of the Vm
when:

I. The cell composition is known for the Vm.

/*

Warburton, D. L., personal communication.
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The act ivities and standard Gibbs energi.,;s of formation are known
w it h suff ticient accuracy for the Vc.

i. Equilibria exist in the system.

Using such information the thermodynamic data indicate:

4. At ambient conditions, in the normal commercial alkaline systems
with zinc anodes, ZnO is the anodic discharge product.

5. In the "acid" MnO2 -Zn system the initial electrochemical reaction
involves a two electron reduction of MnO2.

6. In the alkaline MnO 2-Zn system a one electron reduction of MnO 2
forming an aqueous solution of complexed Mn3 + ions accounts for the
mlit ial Vm.

8
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TABLE 1. STANDARD GIBBS ENERGY OF FORMATION (AfG9)

AT 298.15K IN kJ/MOLE - BATTERY ACTIVE MATERIALS*

SUJBSTANCE AfG0  REFERENCE COMMENTS

PbO 2(cr) -217.33 1, P. 119

H 2 04 (ai) -744.53 1, p. 58

PbSO 4 (cr) -813.14 1, p. 120

H 2 00) -237.129 1, p. 38

PbI 2(cr) -173.64 1, p. 120

LAilI(cr) -270.29 1, p. 293

Ag20 (cr) -11.20 1, p. 160

PbO(cr), yellow -187.89 1, p. 119

HgO(cr), red -58.539 1, p. 150

ZnO(cr) -318.30 1, p. 138

ZnO)2 (cr), e -555.07 1, p. 138

MnO (cr) -465.14 1, p. 191

Zn J(ao) -147.06 1, p. 138

Mn 2+(ao) -228.1 1, p. 191

Oil (ao) -157.244 1, p. 38

NH 4OH(ao) -263.65 1, p. 65
'+(o

NH4 (a)-79.31 1, p. 65

Cl (ao) -131.228 1, p. 47

Mn 2 03(cr) -881.1 1, p. 191

7ZnCI 2*2NH 3(cr) -503.2 1, p. 141

H1n(OH) 2(am) -615.0 1, P. 191

M11304 (cr) -1283.2 1, P. 191

LiCl(k) -342.721 2, --- At 773K, Calculated

AgO(cr) 14.11 3, pp. 612-615 Calculated

ZnCl,04Zn(OH) 2(Cr) -2653. 4, pp. 935-940 Estimated

Z~ nO*Mn2 0 3 (cr) -1226. 5, pp. 209C-214C Estimated

.lnOH) 4(ao) -933. 6, pp. 405-409 Calculated

Mn(OOH)(cr) -561. 7, pp. 959-963;

*8, pp. 262-265 Selected

*For substances in reactions not listed here, tifG 0 = 0.

9
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TABLE 2. ELECTROLYTES

SUdSTANCE WEIGHT PERCENT MOLALITY REACTION NUM186R

a. LiCi 44.7 19.0641 1

b. H2S04  37.4 6.U914 2

c. KOH 40.0 11.8814

After Saturation*

ZnO 6.60** 1.3518

d. NH4Cl 26.0 7.4551

ZriC12  8.8 U.9904

MnC 12 4.65 x 1-

Tie ionic strength was 10.426. The pH was measured as 4.65 9-16

e. KOH 30.0 7.6381

After Saturat ion***

ZnO 4.13** 0.7251

*The ionic strength was 13.2333. 6

**Based on recalculated data of Reference 9.

***The ionic strength was 8.3631. 18-20

10
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